目 录CONTENT

文章目录

泰勒公式

~梓
2025-11-04 / 0 评论 / 0 点赞 / 5 阅读 / 0 字
温馨提示:
部分素材来自网络,若不小心影响到您的利益,请联系我们删除。

1. 指数函数 ​e^x:e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + o(x^5)

2. 正弦函数 ​\sin x(x为弧度):\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + o(x^7)

3. 余弦函数 ​\cos x(x为弧度):\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + o(x^6)

4. 对数函数 ​\ln(1+x):\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + o(x^6)(x \in (-1,1])

5. 幂函数​ (1+x)^\alpha(α为任意实数):(1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}x^3 + \frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3)}{24}x^4 + \frac{\alpha(\alpha-1)(\alpha-2)(\alpha-3)(\alpha-4)}{120}x^5 + o(x^5)(x \in (-1,1))

6. 分式函数 ​\frac{1}{1 - x}:\frac{1}{1 - x} = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + o(x^6)(|x| < 1)

7. 分式函数​ \frac{1}{1 + x}:\frac{1}{1 + x} = 1 - x + x^2 - x^3 + x^4 - x^5 + x^6 + o(x^6)(|x| < 1)

8. 分式函数 ​\frac{1}{(1 - x)^2}:\frac{1}{(1 - x)^2} = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + o(x^5)(|x| < 1)

9. 分式函数 ​\frac{1}{\sqrt{1 - x}}:\frac{1}{\sqrt{1 - x}} = 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \frac{35}{128}x^4 + \frac{63}{256}x^5 + o(x^5)(x < 1)

10. 反正切函数​ \arctan x(x为弧度):\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} + o(x^9)(|x| \leq 1)

11. 反正弦函数 ​\arcsin x(x为弧度):\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \frac{5}{112}x^7 + \frac{35}{1152}x^9 + o(x^9)(|x| \leq 1)

12. 双曲正弦​ \sinh x:\sinh x = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040} + o(x^7)

13. 双曲余弦 ​\cosh x:\cosh x = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + o(x^6)

14. 双曲正切 ​\tanh x(x为弧度):\tanh x = x - \frac{x^3}{3} + \frac{2x^5}{15} + o(x^5)(|x| < \frac{\pi}{2})

需要我再补充其他函数(比如 \tan x、\ln(1 - x))的$包裹公式吗?

0

评论区